A TOR CALCULATION

The purpose of the write-up is to present the following example for my Math 830 class.

Example. Suppose k is a field and set $R := k[X,Y]/\langle XY \rangle$. We use lower case x,y to denote images in R. Set $\mathfrak{m} := \langle x,y \rangle$ in R, so that $R/\mathfrak{m} \cong k$. We calculate $\operatorname{Tor}_n^R(R/\mathfrak{m},R/xR)$ for all $n \geq 0$ in two different ways. We begin by noting that in R, $xf \equiv 0$ if and only if $f \in yR$ and $gy \equiv 0$ if and only if $g \in xR$.

We will first show that

$$\mathcal{F} : \cdots \xrightarrow{\phi_4} R^2 \xrightarrow{\phi_3} R^2 \xrightarrow{\phi_2} R^2 \xrightarrow{\phi_1} R \xrightarrow{\pi} R/\mathfrak{m} \to 0$$

is a free resolution of R/\mathfrak{m} , where

$$\phi_1 = \begin{pmatrix} x & y \end{pmatrix}$$

$$\phi_2 = \begin{pmatrix} -y & y \\ x & 0 \end{pmatrix}$$

$$\phi_3 = \begin{pmatrix} y & 0 \\ y & x \end{pmatrix}$$

$$\phi_4 = \begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix}$$

$$\phi_5 = \begin{pmatrix} y & 0 \\ 0 & x \end{pmatrix},$$

and $\phi_n = \phi_4$, for n even and $\phi_n = \phi_5$ for n odd, if $n \ge 6$. Now, the image of each ϕ_{i+1} is contained in the kernel of ϕ_i , since the product of the matrices $\phi_i\phi_{i+1} = 0$, for all $i \ge 1$. We must check the reverse containments. To begin, if $\phi_1\begin{pmatrix} a \\ b \end{pmatrix} \equiv \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, then $ax + by \equiv 0$ in R. Thus, AX + BY = CXY, in k[X,Y],

for some C. Therefore, (A-CY)X+BY=0, so $\binom{A-CY}{B}=D\binom{-Y}{X}$, for some D. Thus, in k[X,Y], $\binom{A}{B}=D\binom{-Y}{X}+C\binom{Y}{0}$, so in R we have $\binom{a}{b}\equiv d\binom{-y}{x}+c\binom{y}{0}$, showing that $\binom{a}{b}\equiv \phi_2\binom{d}{c}$. That is, the kernel of ϕ_1 is contained in the image of ϕ_2 , which gives exactness of $\mathcal F$ in homological degree one.

Now suppose $\begin{pmatrix} a \\ b \end{pmatrix}$ is in the kernel of ϕ_2 . Then $a \begin{pmatrix} -y \\ x \end{pmatrix} + b \begin{pmatrix} y \\ 0 \end{pmatrix} \equiv \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ over R. Then $-ay + by \equiv 0$ and $ax \equiv 0$ in R. Thus, $-a + b \equiv cx$ and $a \equiv dy$, for some $c, d \in R$. Therefore, $b \equiv cx + dy$. Therefore, $\begin{pmatrix} a \\ b \end{pmatrix} \equiv \begin{pmatrix} y & 0 \\ y & x \end{pmatrix} \begin{pmatrix} d \\ c \end{pmatrix}$, showing that $\begin{pmatrix} a \\ b \end{pmatrix}$ is in the image of ϕ_2 . Thus $\mathcal F$ is exact in homological degree two.

Now suppose $\binom{a}{b}$ is in the kernel of ϕ_3 . Then $a\binom{y}{y} + b\binom{0}{x} \equiv \binom{0}{0}$ over R. Thus, $ay \equiv 0$ and $ay + bx \equiv 0$ in R. The first equation implies $a \equiv cx$, for some $c \in R$. Using this in the second equation we get $0 \equiv (cx)y + bx \equiv bx$, so that $b \equiv dy$, for some $d \in R$. Thus, $\binom{a}{b} \equiv \binom{x}{0} \binom{c}{y} \binom{c}{d}$, so that $\binom{a}{b}$ is in the image of ϕ_4 , which gives exactness of $\mathcal F$ in homological degree three.

Suppose $\begin{pmatrix} a \\ b \end{pmatrix}$ belongs to the kernel of ϕ_4 . Then $a\begin{pmatrix} x \\ 0 \end{pmatrix} + b\begin{pmatrix} 0 \\ y \end{pmatrix} \equiv \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, so $ax \equiv 0 \equiv by$ in R. Thus, $a \equiv cy$ and $b \equiv dx$, for $c, d \in R$, and hence $\begin{pmatrix} y & 0 \\ 0 & x \end{pmatrix} \begin{pmatrix} c \\ d \end{pmatrix} \equiv \begin{pmatrix} a \\ b \end{pmatrix}$, showing that the kernel of ϕ_4 is contained in the image of ϕ_5 , and therefore exactness holds in \mathcal{F} in homological degree four. That \mathcal{F} is exact now follows by the periodicity, since the remaining kernels and images have already been calculated.

1

Now, to calculate $\operatorname{Tor}_n^R(R/\mathfrak{m},R/xR)$ we truncate $\mathcal F$ by dropping the R/\mathfrak{m} term, to obtain $\tilde{\mathcal F}$, and tensor with R/xR. But R/xR=k[y]=k[Y]. For ease of notation, we set S:=R/xR. We also note that the action of x on the R-module S is zero since its image in the ring S is zero. Thus, when we tensor $\tilde{\mathcal F}$ with S, we get the complex

 $\tilde{\mathcal{F}} \otimes S: \qquad \cdots \xrightarrow{\psi_4} S^2 \xrightarrow{\psi_3} S^2 \xrightarrow{\psi_2} S^2 \xrightarrow{\psi_1} S \to 0,$

where

$$\psi_1 = \begin{pmatrix} 0 & y \end{pmatrix}$$

$$\psi_2 = \begin{pmatrix} -y & y \\ 0 & 0 \end{pmatrix}$$

$$\psi_3 = \begin{pmatrix} y & 0 \\ y & 0 \end{pmatrix}$$

$$\psi_4 = \begin{pmatrix} 0 & 0 \\ 0 & y \end{pmatrix}$$

$$\psi_5 = \begin{pmatrix} y & 0 \\ 0 & 0 \end{pmatrix},$$

and $\psi_n = \psi_4$, for n even and $\psi_n = \psi_5$ for n odd, if $n \ge 6$. Now, $\operatorname{Tor}_0^R(R/\mathfrak{m}, R/xR)$ is the cokernel of ψ_1 , which is easily seen to be $S/yS \cong k$.

For $\operatorname{Tor}_1^R(R/\mathfrak{m},R/xR)$ we first calculate the kernel of ψ_1 . Working in S, if $\binom{a}{b}$ is in the kernel of ψ_1 , then $a0+by\equiv 0$. Since S is an integral domain, b=0, and a can be anything. Thus, the kernel of ψ_1 is $S\cdot \binom{1}{0}$. If $\binom{c}{d}$ is in the image of ψ_2 , then $\binom{c}{d}\equiv e\binom{-y}{0}+f\binom{y}{0}$, for $e,f\in S$. Therefore, $(e-f)y\equiv c$ and $d\equiv 0$ in S. This shows that c can be any element in yS and $d\equiv 0$. Thus, the image of ψ_2 equals $S\cdot \binom{y}{0}$. Therefore, we have $\operatorname{Tor}_1^R(R/\mathfrak{m},R/xR)=S\cdot \binom{1}{0}/S\cdot \binom{y}{0}\cong S/yS=k$.

One more calculation for this case. For $\operatorname{Tor}_2^R(R/\mathfrak{m},R/xR)$, we first calculate the kernel of ψ_2 . If $\binom{a}{b}$ is in the kernel of ψ_2 , then $a \begin{pmatrix} -y \\ 0 \end{pmatrix} + b \begin{pmatrix} y \\ 0 \end{pmatrix} \equiv \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ over S. Thus, $(-a+b)y \equiv 0$ in S, so $-a+b \equiv 0$, i.e., $a \equiv b$ in S. Thus, the kernel of ψ_2 is $S \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix}$. If $\binom{c}{d}$ is in the image of ψ_3 , then $\binom{c}{d} \equiv e \begin{pmatrix} y \\ y \end{pmatrix} + f \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, for $e, f \in S$. This shows that the image of ψ_3 is $S \cdot \begin{pmatrix} y \\ y \end{pmatrix}$. Thus, $\operatorname{Tor}_2^R(R/\mathfrak{m},R/xR) = S \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} / S \cdot \begin{pmatrix} y \\ y \end{pmatrix} \cong S/yS = k$. Continuing, with one more calculation, and using the periodicity of $\tilde{\mathcal{F}}$, we have that $\operatorname{Tor}_n^R(R/\mathfrak{m},R/xR) \cong k$, for all $n \geq 0$.

We now calculate $\operatorname{Tor}_n^R(R/\mathfrak{m},R/xR)$ by taking a projective resolution of R/xR over R and tensoring it with R/\mathfrak{m} . We'll see that this is a much easier calculation. We clearly have the following free resolution of R/xR over R:

$$\cdots \xrightarrow{\cdot x} R \xrightarrow{\cdot y} R \xrightarrow{\cdot x} R \xrightarrow{\cdot x} R \xrightarrow{\cdot x} R \rightarrow R/xR \rightarrow 0.$$

Dropping R/xR and tensoring with R/\mathfrak{m} we obtain the complex

$$\cdots \stackrel{\cdot x}{\to} R/\mathfrak{m} \stackrel{\cdot y}{\to} R/\mathfrak{m} \stackrel{\cdot x}{\to} R/\mathfrak{m} \stackrel{\cdot y}{\to} R/\mathfrak{m} \stackrel{\cdot x}{\to} R/\mathfrak{m} \to 0.$$

Since $x, y \in \mathfrak{m}$, the kernel in each homological degree is R/\mathfrak{m} and the image in the same degree is 0. Thus, $\operatorname{Tor}_n^R(R/\mathfrak{m}, R/xR) \cong R/\mathfrak{m} = k$, for all $n \geq 0$.